
Enhanced Transaction Sequencing for Modular
Distributed Ledgers

Can Umut Ileri
IOTA Foundation

canumut.ileri@iota.org

Andrew Cullen
IOTA Foundation

andrew.cullen@iota.org

Olivia Saa
IOTA Foundation

olivia.saa.cullen@iota.org

Roman Overko
IOTA Foundation

roman.overko@iota.org

Luigi Vigneri
IOTA Foundation

luigi.vigneri@iota.org

Abstract—We introduce an improved congestion control algo-
rithm for managing transactions that access shared objects in
distributed ledgers utilizing the Move Virtual Machine, such as
Sui and IOTA Rebased. The current congestion control algorithm
prioritizes fairness by favoring high-paying transactions, but
this often comes at the expense of throughput due to an
unnecessarily high number of transaction deferrals. To address
this, we propose a more rigorous definition of fairness that
reduces excessive deferrals without compromising the execution
efficiency of non-concurrent transactions. Building on this refined
fairness property, our algorithm can achieve higher throughput
and lower latency while preserving this new notion of fairness and
ensuring that the load on the busiest execution worker remains
unchanged.

Index Terms—transaction sequencing, distributed ledgers, con-
gestion control

I. INTRODUCTION

In modern distributed ledgers [1]–[5], consensus protocols
tend to determine the set of transactions to be processed
without enforcing an order on their execution. While this
design improves the speed and scalability of consensus, it ne-
cessitates several post-consensus steps, which typically include
sequencing (ordering transactions and managing congestion),
scheduling (assigning transactions to execution workers), and
executing transactions. Among these, sequencing is particu-
larly important as it directly impacts system performance while
trying to ensure fairness among transactions.

A key challenge in sequencing arises from the concept of
shared objects, which are data entities that can be accessed
and modified by anyone. This powerful flexibility enabled by
shared objects, however, creates a critical challenge: ordering
transactions that access the same shared object, since execution
outcome of non-concurrent transactions depend on the order
they are processed. Efficient and fair sequencing of such
transactions is vital for overall system performance.

The current sequencing algorithm in Sui1 and IOTA2 pri-
oritizes fairness by strictly favoring high-paying transactions.
However, as explained in Section II, this approach often leads
to an unnecessarily high number of deferrals, which in turn
reduces throughput and increases latency. This trade-off stems
from a simplistic fairness definition that overlooks the efficient
handling of non-concurrent transactions.

1https://github.com/MystenLabs/sui
2https://github.com/iotaledger/iota

To address this limitation, we propose a refined definition of
fairness that minimizes transaction deferrals without compro-
mising execution efficiency in Section III. Building on this
improved definition, we introduce an enhanced sequencing
algorithm that defers fewer transactions without changing the
load of the busiest execution worker.

II. CURRENT SEQUENCING ALGORITHM

In the current implementation of Sui mainnet and IOTA
testnet, the sequencing phase begins by ordering transactions
based on their gas price after they have been approved by the
fault-tolerant consensus algorithm [1]. These ordered transac-
tions are then evaluated sequentially using ALGSEQ (Algo-
rithm 1), which determines whether each transaction should
proceed to execution or be delayed.3 Delayed transactions are
incorporated into the subsequent consensus round’s transaction
batch, with the risk of cancellation if the batch size exceeds
system limits. Importantly, ALGSEQ preserves the gas price
ordering established in the initial phase.

Algorithm 1 Current sequencing algorithm
1: procedure ALGSEQ(T : tx set, L: congestion limit)
2: co ← 0 for all object o ∈ O
3: T ∗ ← sort(T ) by gas price
4: for t ∈ T ∗ do
5: c∗ ← max

o∈Ot

co ▷ Ot is t’s input objects

6: if c∗ + 1 > L then
7: D ← D ∪ {t} ▷ Set of deferred txs
8: else
9: co ← c∗ + 1, ∀o ∈ Ot

10: A ← A∪ {t} ▷ Set of accepted txs
return {A,D}

The primary function of ALGSEQ is to selectively filter
transactions to maintain a manageable load on the execution
phase. The algorithm is designed to satisfy two properties:

1) Critical sequential load (PropSeqLoad): For any ac-
cepted transaction t, given sufficient parallel processing
capacity, execution must start before time L− 1, where
L represents a protocol-defined configuration parame-
ter. This property ensures that the load on the busiest
execution worker is limited by L.

3For simplicity, and without loss of generality, we assume in this paper that
the estimated execution cost for all transactions is 1.

https://github.com/MystenLabs/sui
https://github.com/iotaledger/iota


2) Gas price strong fairness (PropStrongFairness): Given
a transaction sequence ordered by gas price, for any pair
of transactions that touch4 a common shared object, the
transaction with higher gas price must execute first.

III. IMPROVEMENT ALGORITHM

We begin by demonstrating that ALGSEQ’s deferral de-
cisions can lead to violations of PropStrongFairness across
multiple sequencing rounds, even though this property is
satisfied within the round.

Example 1: Consider a system where L = 2 with four
transactions ordered by descending gas prices: tx1 accessing
only object a, tx2 accessing both objects a and b, tx3

accessing both objects b and c, and tx4 accessing object c.
ALGSEQ will schedule tx1, tx2 and tx4, while deferring tx3,
despite tx3 paying more than tx4. Notably, all transactions
could be scheduled without violating Property PropSeqLoad.
This scenario demonstrates that the possible scheduling of tx3

in a later round violates PropStrongFairness.
We propose that by refining PropStrongFairness, we can

develop an algorithm that schedules more transactions while
maintaining Property PropSeqLoad’s guarantees.

• Gas price weak fairness (PropWeakFairness): Given a
transaction sequence ordered by gas price, for any pair
of transactions txi and txj that touch a common shared
object, if txi pays more than txj and is scheduled later
than txj , then txi must be accessing at least one object
not accessed by txj .

We propose the following algorithm for sequencing.

Algorithm 2 Improved sequencing algorithm
1: procedure ALGIMPRSEQ(T : tx set, L: congestion limit)
2: so,l ← 0 for all object o ∈ O and l ∈ [1, L]
3: for each transaction t, in the order provided, do
4: for l ∈ [1, L] do
5: if so,l = 0 ∀ o ∈ Ot then
6: so,l ← 1 ∀ o ∈ Ot

7: A ← A∪ {t} ▷ Set of accepted txs
8: break
9: if t /∈ A then

10: D ← D ∪ {t} ▷ Set of deferred txs
return {A,D}

Lemma 1. ALGIMPRSEQ satisfies PropWeakFairness.

Proof. Let Ot, pt and gt represent the set of input objects, the
scheduling position, and the gas price of transaction, respec-
tively. PropWeakFairness states that for any two transactions
i and j, if pj < pi and gj < gi , then Oi ̸⊆ Oj . To establish
lemma, we will prove pj < pi ∧ gj < gi =⇒ Oi ̸⊆ Oj .

As transactions are processed in descending gas price order,
i is processed before j. Transaction i is assigned the minimum
execution slot l where so,l = 0 for all o ∈ Oi, after which

4We define touch as any access operation on an object that is subject to at
least one write operation within the same transaction batch.

so,l ← 1 for all o ∈ Oi. Suppose j is then assigned to an
earlier slot pj < pi. We claimOi ̸⊆ Oj must hold. IfOi ⊆ Oj ,
then the condition so,l = 0 for all o ∈ Oi would be at least as
restrictive as for j. Since j is processed after i (as gj < gi), it
would necessarily be assigned a later slot, contradicting pj <
pi. Thus, pj < pi ∧ gj < gi =⇒ Oi ̸⊆ Oj .

Lemma 2. Any transaction accepted by ALGSEQ will also be
accepted by ALGIMPRSEQ.

Proof. The only condition to defer a transaction in ALGSEQ
is in Line 6, and depends on c∗ and L. Since L is a
constant, deferment of a transaction in ALGSEQ depends
solely on c∗. When evaluating a transaction t in ALGIM-
PRSEQ, the value of c∗ used in ALGSEQ can be expressed
as: c∗ = max (argmax

l∈[1,L]

so,l ∀o ∈ Ot). If t is accepted by

ALGIMPRSEQ at a slot l < c∗, then c∗ remains unchanged in
the subsequent evaluation. An accepted transaction can only
modify c∗ when l = c∗. Now consider the case where t is
deferred by ALGIMPRSEQ. Then, there must exist at least one
object o ∈ Ot such that so,L = 1, meaning c∗ = L. In this
case t would also be deferred by ALGSEQ. Therefore, any
transaction deferred by ALGIMPRSEQ would also be deferred
by ALGSEQ. Hence, any transaction accepted by ALGSEQ
will also be accepted by ALGIMPRSEQ.

From Lemma 2, we can establish:

Lemma 3. ALGIMPRSEQ achieves throughput at least as high
as ALGSEQ for any given sequence of transactions.

Theorem 4. Given the same inputs and same post-consensus
processing of transactions, ALGIMPRSEQ improves through-
put over ALGSEQ, without violating fairness.

Proof. By Property PropSeqLoad, ALGIMPRSEQ does not
worsen the expected execution time, while possibly increasing
the number of sequenced transactions, as stated in Lemma 3.
Fairness is preserved in two key ways: all transactions ac-
cepted by ALGSEQ are guaranteed to be accepted as shown
in Lemma 2, and transactions with overlapping objects are still
executed in the order of gas price, as ensured by Lemma 1.

To illustrate Theorem 4 we use Example 1, where AL-
GIMPRSEQ successfully executes all four transactions while
ensuring that the highest sequential load remains within the
allowed limit, assuming sufficient parallelization. It is worth
noting that ALGIMPRSEQ does not necessarily preserve the
transaction ordering enforced by ALGSEQ, which may result
in different execution outcomes between the two algorithms.

IV. CONCLUSION

We presented an improved sequencing algorithm for the
current implementation of Sui mainnet and IOTA testnet. The
algorithm achieves higher throughput through refined fairness
requirements while maintaining system guarantees.



REFERENCES

[1] K. Babel, A. Chursin, G. Danezis, A. Kichidis, L. Kokoris-Kogias,
A. Koshy, A. Sonnino, and M. Tian, “Mysticeti: Reaching the limits of
latency with uncertified dags,” arXiv preprint arXiv:2310.14821, 2023.

[2] G. Danezis, L. Kokoris-Kogias, A. Sonnino, and A. Spiegelman, “Nar-
whal and tusk: a dag-based mempool and efficient bft consensus,”
in Proceedings of the Seventeenth European Conference on Computer
Systems, 2022, pp. 34–50.

[3] S. Müller, A. Penzkofer, N. Polyanskii, J. Theis, W. Sanders, and
H. Moog, “Tangle 2.0 leaderless nakamoto consensus on the heaviest
dag,” IEEE Access, vol. 10, pp. 105 807–105 842, 2022.

[4] S. Müller, A. Penzkofer, N. Polyanskii, J. Theis, W. Sanders, and
H. Moog, “Reality-based utxo ledger,” Distributed Ledger Technologies:
Research and Practice, vol. 2, no. 3, pp. 1–33, 2023.

[5] S. Blackshear, E. Cheng, D. L. Dill, V. Gao, B. Maurer, T. Nowacki,
A. Pott, S. Qadeer, D. R. Rain, S. Sezer et al., “Move: A language with
programmable resources,” Libra Assoc, p. 1, 2019.


	Introduction
	Current Sequencing Algorithm
	Improvement Algorithm
	Conclusion
	References

