1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
// Copyright (c) Mysten Labs, Inc.
// Modifications Copyright (c) 2024 IOTA Stiftung
// SPDX-License-Identifier: Apache-2.0

use std::{
    collections::{HashMap, HashSet, hash_map::DefaultHasher},
    hash::{Hash, Hasher},
    sync::Arc,
    time::Duration,
};

use futures::FutureExt;
use parking_lot::Mutex;
use prometheus::{
    IntCounterVec, IntGaugeVec, Registry, register_int_counter_vec_with_registry,
    register_int_gauge_vec_with_registry,
};
use tokio::{
    runtime::Handle,
    sync::{mpsc, mpsc::error::TrySendError},
    time::Instant,
};
use tracing::{debug, error};

use crate::monitored_scope;

type Point = u64;
type HistogramMessage = (HistogramLabels, Point);

/// Represents a histogram metric used for collecting and recording data
/// distributions. The `Histogram` struct contains `labels` that categorize the
/// histogram and a `channel` for sending `HistogramMessage` instances to record
/// the data.
#[derive(Clone)]
pub struct Histogram {
    labels: HistogramLabels,
    channel: mpsc::Sender<HistogramMessage>,
}

/// A guard used for timing the duration of an operation and recording it in a
/// `Histogram`. The `HistogramTimerGuard` starts a timer upon creation and,
/// when dropped, records the elapsed time into the associated `Histogram`.
pub struct HistogramTimerGuard<'a> {
    histogram: &'a Histogram,
    start: Instant,
}

/// Represents a collection of histograms for managing multiple labeled metrics.
/// The `HistogramVec` struct allows for sending `HistogramMessage` instances
/// via a channel to record data in a particular histogram, providing a way to
/// track different metrics concurrently.
#[derive(Clone)]
pub struct HistogramVec {
    channel: mpsc::Sender<HistogramMessage>,
}

/// Collects histogram data by receiving `HistogramMessage` instances and
/// passing them to the `HistogramReporter`. The `HistogramCollector` manages an
/// asynchronous channel for receiving messages and uses a `Mutex`-protected
/// `HistogramReporter` to process and report the collected data. It also stores
/// the name of the collector for identification.
struct HistogramCollector {
    reporter: Arc<Mutex<HistogramReporter>>,
    channel: mpsc::Receiver<HistogramMessage>,
    _name: String,
}

/// Reports histogram metrics by aggregating and processing data collected from
/// multiple histograms. The `HistogramReporter` maintains various metrics,
/// including a gauge (`gauge`), total sum (`sum`), and count (`count`) for
/// tracking histogram values. It uses `known_labels` to manage label sets for
/// data categorization, and `percentiles` to calculate specific statistical
/// measurements for the collected data.
struct HistogramReporter {
    gauge: IntGaugeVec,
    sum: IntCounterVec,
    count: IntCounterVec,
    known_labels: HashSet<HistogramLabels>,
    percentiles: Vec<usize>,
}

type HistogramLabels = Arc<HistogramLabelsInner>;

/// Represents the inner structure of histogram labels, containing a list of
/// labels (`labels`) and a precomputed hash (`hash`) for efficient lookup and
/// categorization.
struct HistogramLabelsInner {
    labels: Vec<String>,
    hash: u64,
}

/// Reports the histogram to the given prometheus gauge.
/// Unlike the histogram from prometheus crate, this histogram does not require
/// to specify buckets It works by calculating 'true' histogram by aggregating
/// and sorting values.
///
/// The values are reported into prometheus gauge with requested labels and
/// additional dimension for the histogram percentile.
///
/// It worth pointing out that due to those more precise calculations, this
/// Histogram usage is somewhat more limited comparing to original prometheus
/// Histogram.
///
/// On the bright side, this histogram exports less data to Prometheus comparing
/// to prometheus::Histogram, it exports each requested percentile into separate
/// prometheus gauge, while original implementation creates gauge per bucket.
/// It also exports _sum and _count aggregates same as original implementation.
///
/// It is ok to measure timings for things like network latencies and expensive
/// crypto operations. However as a rule of thumb this histogram should not be
/// used in places that can produce very high data point count.
///
/// As a last round of defence this histogram emits error log when too much data
/// is flowing in and drops data points.
///
/// This implementation puts great deal of effort to make sure the metric does
/// not cause any harm to the code itself:
/// * Reporting data point is a non-blocking send to a channel
/// * Data point collections tries to clear the channel as fast as possible
/// * Expensive histogram calculations are done in a separate blocking tokio
///   thread pool to avoid effects on main scheduler
/// * If histogram data is produced too fast, the data is dropped and error! log
///   is emitted
impl HistogramVec {
    pub fn new_in_registry(name: &str, desc: &str, labels: &[&str], registry: &Registry) -> Self {
        Self::new_in_registry_with_percentiles(name, desc, labels, registry, vec![
            500usize, 950, 990,
        ])
    }

    /// Allows to specify percentiles in 1/1000th, e.g. 90pct is specified as
    /// 900
    pub fn new_in_registry_with_percentiles(
        name: &str,
        desc: &str,
        labels: &[&str],
        registry: &Registry,
        percentiles: Vec<usize>,
    ) -> Self {
        let sum_name = format!("{}_sum", name);
        let count_name = format!("{}_count", name);
        let sum =
            register_int_counter_vec_with_registry!(sum_name, desc, labels, registry).unwrap();
        let count =
            register_int_counter_vec_with_registry!(count_name, desc, labels, registry).unwrap();
        let labels: Vec<_> = labels.iter().cloned().chain(["pct"]).collect();
        let gauge = register_int_gauge_vec_with_registry!(name, desc, &labels, registry).unwrap();
        Self::new(gauge, sum, count, percentiles, name)
    }

    // Do not expose it to public interface because we need labels to have a
    // specific format (e.g. add last label is "pct")
    fn new(
        gauge: IntGaugeVec,
        sum: IntCounterVec,
        count: IntCounterVec,
        percentiles: Vec<usize>,
        name: &str,
    ) -> Self {
        let (sender, receiver) = mpsc::channel(1000);
        let reporter = HistogramReporter {
            gauge,
            sum,
            count,
            percentiles,
            known_labels: Default::default(),
        };
        let reporter = Arc::new(Mutex::new(reporter));
        let collector = HistogramCollector {
            reporter,
            channel: receiver,
            _name: name.to_string(),
        };
        Handle::current().spawn(collector.run());
        Self { channel: sender }
    }

    /// Creates a new `Histogram` with the specified label values. The function
    /// takes a slice of label strings, converts them into a
    /// `HistogramLabelsInner` structure, and returns a new `Histogram`
    /// instance that shares the same data channel as the original.
    pub fn with_label_values(&self, labels: &[&str]) -> Histogram {
        let labels = labels.iter().map(ToString::to_string).collect();
        let labels = HistogramLabelsInner::new(labels);
        Histogram {
            labels,
            channel: self.channel.clone(),
        }
    }
}

impl HistogramLabelsInner {
    pub fn new(labels: Vec<String>) -> HistogramLabels {
        // Not a crypto hash
        let mut hasher = DefaultHasher::new();
        labels.hash(&mut hasher);
        let hash = hasher.finish();
        Arc::new(Self { labels, hash })
    }
}

impl PartialEq for HistogramLabelsInner {
    fn eq(&self, other: &Self) -> bool {
        self.hash == other.hash
    }
}

impl Eq for HistogramLabelsInner {}

impl Hash for HistogramLabelsInner {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.hash.hash(state)
    }
}

impl Histogram {
    /// Creates a new `Histogram` instance in the specified `Registry` with the
    /// given `name` and `desc`. It initializes the histogram in the
    /// `registry`, with no labels by default.
    pub fn new_in_registry(name: &str, desc: &str, registry: &Registry) -> Self {
        HistogramVec::new_in_registry(name, desc, &[], registry).with_label_values(&[])
    }

    /// Observes a value in the histogram by reporting the given `Point`.
    pub fn observe(&self, v: Point) {
        self.report(v)
    }

    /// Reports a value (`Point`) to the histogram by sending it through the
    /// internal channel. This method manages the process of collecting and
    /// reporting metrics for the histogram.
    pub fn report(&self, v: Point) {
        match self.channel.try_send((self.labels.clone(), v)) {
            Ok(()) => {}
            Err(TrySendError::Closed(_)) => {
                // can happen during runtime shutdown
            }
            Err(TrySendError::Full(_)) => debug!("Histogram channel is full, dropping data"),
        }
    }

    /// Starts a timer and returns a `HistogramTimerGuard` that, when dropped,
    /// will record the elapsed time in the associated histogram.
    pub fn start_timer(&self) -> HistogramTimerGuard {
        HistogramTimerGuard {
            histogram: self,
            start: Instant::now(),
        }
    }
}

impl HistogramCollector {
    /// Runs the histogram collection process asynchronously, cycling at a
    /// specified interval (`HISTOGRAM_WINDOW_SEC`). It calculates the next
    /// deadline and continuously processes incoming data points. The
    /// process stops when `cycle` returns an error, which typically
    /// indicates that the histogram no longer exists.
    pub async fn run(mut self) {
        let mut deadline = Instant::now();
        loop {
            // We calculate deadline here instead of just using sleep inside cycle to avoid
            // accumulating error
            #[cfg(test)]
            const HISTOGRAM_WINDOW_SEC: u64 = 1;
            #[cfg(not(test))]
            const HISTOGRAM_WINDOW_SEC: u64 = 60;
            deadline += Duration::from_secs(HISTOGRAM_WINDOW_SEC);
            if self.cycle(deadline).await.is_err() {
                return;
            }
        }
    }

    /// Collects histogram data points until a deadline or a maximum number of
    /// points (`MAX_POINTS`) is reached. The function collects data points
    /// into `labeled_data` while receiving them from the channel, breaking
    /// when either the deadline is reached or the histogram channel is closed.
    /// If the number of data points exceeds the limit, some points are
    /// dropped, and an error is logged. After processing, the data is
    /// handed off to the reporter for aggregation and analysis.
    async fn cycle(&mut self, deadline: Instant) -> Result<(), ()> {
        let mut labeled_data: HashMap<HistogramLabels, Vec<Point>> = HashMap::new();
        let mut count = 0usize;
        let mut timeout = tokio::time::sleep_until(deadline).boxed();
        const MAX_POINTS: usize = 500_000;
        loop {
            tokio::select! {
                _ = &mut timeout => break,
                point = self.channel.recv() => {
                    count += 1;
                    if count > MAX_POINTS {
                        continue;
                    }
                    if let Some((label, point)) = point {
                        let values = labeled_data.entry(label).or_default();
                        values.push(point);
                    } else {
                        // Histogram no longer exists
                        return Err(());
                    }
                },
            }
        }
        if count > MAX_POINTS {
            error!(
                "Too many data points for histogram, dropping {} points",
                count - MAX_POINTS
            );
        }
        if Arc::strong_count(&self.reporter) != 1 {
            #[cfg(not(debug_assertions))]
            error!(
                "Histogram data overflow - we receive histogram data for {} faster then can process. Some histogram data is dropped",
                self._name
            );
        } else {
            let reporter = self.reporter.clone();
            Handle::current().spawn_blocking(move || reporter.lock().report(labeled_data));
        }
        Ok(())
    }
}

impl HistogramReporter {
    /// Reports the collected histogram data by aggregating it and updating the
    /// corresponding metrics. It first sorts the data points and then
    /// calculates specific percentiles as defined by `self.percentiles`.
    /// Each calculated percentile value is set in the `IntGaugeVec`. It also
    /// computes the total sum and count of the data points, updating the
    /// respective metrics (`sum` and `count`). If any labels are no longer in
    /// use, their metrics are reset to zero.
    pub fn report(&mut self, labeled_data: HashMap<HistogramLabels, Vec<Point>>) {
        let _scope = monitored_scope("HistogramReporter::report");
        let mut reset_labels = self.known_labels.clone();
        for (label, mut data) in labeled_data {
            self.known_labels.insert(label.clone());
            reset_labels.remove(&label);
            assert!(!data.is_empty());
            data.sort_unstable();
            for pct1000 in self.percentiles.iter() {
                let index = Self::pct1000_index(data.len(), *pct1000);
                let point = *data.get(index).unwrap();
                let pct_str = Self::format_pct1000(*pct1000);
                let labels = Self::gauge_labels(&label, &pct_str);
                let metric = self.gauge.with_label_values(&labels);
                metric.set(point as i64);
            }
            let mut sum = 0u64;
            let count = data.len() as u64;
            for point in data {
                sum += point;
            }
            let labels: Vec<_> = label.labels.iter().map(|s| &s[..]).collect();
            self.sum.with_label_values(&labels).inc_by(sum);
            self.count.with_label_values(&labels).inc_by(count);
        }

        for reset_label in reset_labels {
            for pct1000 in self.percentiles.iter() {
                let pct_str = Self::format_pct1000(*pct1000);
                let labels = Self::gauge_labels(&reset_label, &pct_str);
                let metric = self.gauge.with_label_values(&labels);
                metric.set(0);
            }
        }
    }

    /// Constructs a vector of label values for a gauge metric. It takes a
    /// `HistogramLabels` instance and a percentile string (`pct_str`),
    /// returning a combined list of label values to be used for identifying
    /// the gauge metric.
    fn gauge_labels<'a>(label: &'a HistogramLabels, pct_str: &'a str) -> Vec<&'a str> {
        let labels = label.labels.iter().map(|s| &s[..]).chain([pct_str]);
        labels.collect()
    }

    /// Returns value in range [0; len)
    fn pct1000_index(len: usize, pct1000: usize) -> usize {
        len * pct1000 / 1000
    }

    /// Formats a given percentile value (`pct1000`) as a string by converting
    /// it to a decimal percentage. The `pct1000` parameter is divided by 10
    /// to represent the correct percentile value (e.g., 250 -> "25.0").
    fn format_pct1000(pct1000: usize) -> String {
        format!("{}", (pct1000 as f64) / 10.)
    }
}

impl<'a> Drop for HistogramTimerGuard<'a> {
    /// Reports the elapsed time in milliseconds to the associated histogram
    /// when the `HistogramTimerGuard` is dropped.
    fn drop(&mut self) {
        self.histogram
            .report(self.start.elapsed().as_millis() as u64);
    }
}

#[cfg(test)]
mod tests {
    use prometheus::proto::MetricFamily;

    use super::*;

    #[test]
    fn pct_index_test() {
        assert_eq!(200, HistogramReporter::pct1000_index(1000, 200));
        assert_eq!(100, HistogramReporter::pct1000_index(500, 200));
        assert_eq!(1800, HistogramReporter::pct1000_index(2000, 900));
        // Boundary checks
        assert_eq!(21, HistogramReporter::pct1000_index(22, 999));
        assert_eq!(0, HistogramReporter::pct1000_index(1, 999));
        assert_eq!(0, HistogramReporter::pct1000_index(1, 100));
        assert_eq!(0, HistogramReporter::pct1000_index(1, 1));
    }

    #[test]
    fn format_pct1000_test() {
        assert_eq!(HistogramReporter::format_pct1000(999), "99.9");
        assert_eq!(HistogramReporter::format_pct1000(990), "99");
        assert_eq!(HistogramReporter::format_pct1000(900), "90");
    }

    #[tokio::test]
    async fn histogram_test() {
        let registry = Registry::new();
        let histogram = HistogramVec::new_in_registry_with_percentiles(
            "test",
            "xx",
            &["lab"],
            &registry,
            vec![500, 900],
        );
        let a = histogram.with_label_values(&["a"]);
        let b = histogram.with_label_values(&["b"]);
        a.report(1);
        a.report(2);
        a.report(3);
        a.report(4);
        b.report(10);
        b.report(20);
        b.report(30);
        b.report(40);
        tokio::time::sleep(Duration::from_millis(1500)).await;
        let gather = registry.gather();
        let gather: HashMap<_, _> = gather
            .into_iter()
            .map(|f| (f.get_name().to_string(), f))
            .collect();
        let hist = gather.get("test").unwrap();
        let sum = gather.get("test_sum").unwrap();
        let count = gather.get("test_count").unwrap();
        let hist = aggregate_gauge_by_label(hist);
        let sum = aggregate_counter_by_label(sum);
        let count = aggregate_counter_by_label(count);
        assert_eq!(Some(3.), hist.get("::a::50").cloned());
        assert_eq!(Some(4.), hist.get("::a::90").cloned());
        assert_eq!(Some(30.), hist.get("::b::50").cloned());
        assert_eq!(Some(40.), hist.get("::b::90").cloned());

        assert_eq!(Some(10.), sum.get("::a").cloned());
        assert_eq!(Some(100.), sum.get("::b").cloned());

        assert_eq!(Some(4.), count.get("::a").cloned());
        assert_eq!(Some(4.), count.get("::b").cloned());
    }

    fn aggregate_gauge_by_label(family: &MetricFamily) -> HashMap<String, f64> {
        family
            .get_metric()
            .iter()
            .map(|m| {
                let value = m.get_gauge().get_value();
                let mut key = String::new();
                for label in m.get_label() {
                    key.push_str("::");
                    key.push_str(label.get_value());
                }
                (key, value)
            })
            .collect()
    }

    fn aggregate_counter_by_label(family: &MetricFamily) -> HashMap<String, f64> {
        family
            .get_metric()
            .iter()
            .map(|m| {
                let value = m.get_counter().get_value();
                let mut key = String::new();
                for label in m.get_label() {
                    key.push_str("::");
                    key.push_str(label.get_value());
                }
                (key, value)
            })
            .collect()
    }
}