1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
// Copyright (c) Mysten Labs, Inc.
// Modifications Copyright (c) 2024 IOTA Stiftung
// SPDX-License-Identifier: Apache-2.0
use std::{
collections::{HashMap, HashSet, hash_map::DefaultHasher},
hash::{Hash, Hasher},
sync::Arc,
time::Duration,
};
use futures::FutureExt;
use parking_lot::Mutex;
use prometheus::{
IntCounterVec, IntGaugeVec, Registry, register_int_counter_vec_with_registry,
register_int_gauge_vec_with_registry,
};
use tokio::{
runtime::Handle,
sync::{mpsc, mpsc::error::TrySendError},
time::Instant,
};
use tracing::{debug, error};
use crate::monitored_scope;
type Point = u64;
type HistogramMessage = (HistogramLabels, Point);
/// Represents a histogram metric used for collecting and recording data
/// distributions. The `Histogram` struct contains `labels` that categorize the
/// histogram and a `channel` for sending `HistogramMessage` instances to record
/// the data.
#[derive(Clone)]
pub struct Histogram {
labels: HistogramLabels,
channel: mpsc::Sender<HistogramMessage>,
}
/// A guard used for timing the duration of an operation and recording it in a
/// `Histogram`. The `HistogramTimerGuard` starts a timer upon creation and,
/// when dropped, records the elapsed time into the associated `Histogram`.
pub struct HistogramTimerGuard<'a> {
histogram: &'a Histogram,
start: Instant,
}
/// Represents a collection of histograms for managing multiple labeled metrics.
/// The `HistogramVec` struct allows for sending `HistogramMessage` instances
/// via a channel to record data in a particular histogram, providing a way to
/// track different metrics concurrently.
#[derive(Clone)]
pub struct HistogramVec {
channel: mpsc::Sender<HistogramMessage>,
}
/// Collects histogram data by receiving `HistogramMessage` instances and
/// passing them to the `HistogramReporter`. The `HistogramCollector` manages an
/// asynchronous channel for receiving messages and uses a `Mutex`-protected
/// `HistogramReporter` to process and report the collected data. It also stores
/// the name of the collector for identification.
struct HistogramCollector {
reporter: Arc<Mutex<HistogramReporter>>,
channel: mpsc::Receiver<HistogramMessage>,
_name: String,
}
/// Reports histogram metrics by aggregating and processing data collected from
/// multiple histograms. The `HistogramReporter` maintains various metrics,
/// including a gauge (`gauge`), total sum (`sum`), and count (`count`) for
/// tracking histogram values. It uses `known_labels` to manage label sets for
/// data categorization, and `percentiles` to calculate specific statistical
/// measurements for the collected data.
struct HistogramReporter {
gauge: IntGaugeVec,
sum: IntCounterVec,
count: IntCounterVec,
known_labels: HashSet<HistogramLabels>,
percentiles: Vec<usize>,
}
type HistogramLabels = Arc<HistogramLabelsInner>;
/// Represents the inner structure of histogram labels, containing a list of
/// labels (`labels`) and a precomputed hash (`hash`) for efficient lookup and
/// categorization.
struct HistogramLabelsInner {
labels: Vec<String>,
hash: u64,
}
/// Reports the histogram to the given prometheus gauge.
/// Unlike the histogram from prometheus crate, this histogram does not require
/// to specify buckets It works by calculating 'true' histogram by aggregating
/// and sorting values.
///
/// The values are reported into prometheus gauge with requested labels and
/// additional dimension for the histogram percentile.
///
/// It worth pointing out that due to those more precise calculations, this
/// Histogram usage is somewhat more limited comparing to original prometheus
/// Histogram.
///
/// On the bright side, this histogram exports less data to Prometheus comparing
/// to prometheus::Histogram, it exports each requested percentile into separate
/// prometheus gauge, while original implementation creates gauge per bucket.
/// It also exports _sum and _count aggregates same as original implementation.
///
/// It is ok to measure timings for things like network latencies and expensive
/// crypto operations. However as a rule of thumb this histogram should not be
/// used in places that can produce very high data point count.
///
/// As a last round of defence this histogram emits error log when too much data
/// is flowing in and drops data points.
///
/// This implementation puts great deal of effort to make sure the metric does
/// not cause any harm to the code itself:
/// * Reporting data point is a non-blocking send to a channel
/// * Data point collections tries to clear the channel as fast as possible
/// * Expensive histogram calculations are done in a separate blocking tokio
/// thread pool to avoid effects on main scheduler
/// * If histogram data is produced too fast, the data is dropped and error! log
/// is emitted
impl HistogramVec {
pub fn new_in_registry(name: &str, desc: &str, labels: &[&str], registry: &Registry) -> Self {
Self::new_in_registry_with_percentiles(name, desc, labels, registry, vec![
500usize, 950, 990,
])
}
/// Allows to specify percentiles in 1/1000th, e.g. 90pct is specified as
/// 900
pub fn new_in_registry_with_percentiles(
name: &str,
desc: &str,
labels: &[&str],
registry: &Registry,
percentiles: Vec<usize>,
) -> Self {
let sum_name = format!("{}_sum", name);
let count_name = format!("{}_count", name);
let sum =
register_int_counter_vec_with_registry!(sum_name, desc, labels, registry).unwrap();
let count =
register_int_counter_vec_with_registry!(count_name, desc, labels, registry).unwrap();
let labels: Vec<_> = labels.iter().cloned().chain(["pct"]).collect();
let gauge = register_int_gauge_vec_with_registry!(name, desc, &labels, registry).unwrap();
Self::new(gauge, sum, count, percentiles, name)
}
// Do not expose it to public interface because we need labels to have a
// specific format (e.g. add last label is "pct")
fn new(
gauge: IntGaugeVec,
sum: IntCounterVec,
count: IntCounterVec,
percentiles: Vec<usize>,
name: &str,
) -> Self {
let (sender, receiver) = mpsc::channel(1000);
let reporter = HistogramReporter {
gauge,
sum,
count,
percentiles,
known_labels: Default::default(),
};
let reporter = Arc::new(Mutex::new(reporter));
let collector = HistogramCollector {
reporter,
channel: receiver,
_name: name.to_string(),
};
Handle::current().spawn(collector.run());
Self { channel: sender }
}
/// Creates a new `Histogram` with the specified label values. The function
/// takes a slice of label strings, converts them into a
/// `HistogramLabelsInner` structure, and returns a new `Histogram`
/// instance that shares the same data channel as the original.
pub fn with_label_values(&self, labels: &[&str]) -> Histogram {
let labels = labels.iter().map(ToString::to_string).collect();
let labels = HistogramLabelsInner::new(labels);
Histogram {
labels,
channel: self.channel.clone(),
}
}
}
impl HistogramLabelsInner {
pub fn new(labels: Vec<String>) -> HistogramLabels {
// Not a crypto hash
let mut hasher = DefaultHasher::new();
labels.hash(&mut hasher);
let hash = hasher.finish();
Arc::new(Self { labels, hash })
}
}
impl PartialEq for HistogramLabelsInner {
fn eq(&self, other: &Self) -> bool {
self.hash == other.hash
}
}
impl Eq for HistogramLabelsInner {}
impl Hash for HistogramLabelsInner {
fn hash<H: Hasher>(&self, state: &mut H) {
self.hash.hash(state)
}
}
impl Histogram {
/// Creates a new `Histogram` instance in the specified `Registry` with the
/// given `name` and `desc`. It initializes the histogram in the
/// `registry`, with no labels by default.
pub fn new_in_registry(name: &str, desc: &str, registry: &Registry) -> Self {
HistogramVec::new_in_registry(name, desc, &[], registry).with_label_values(&[])
}
/// Observes a value in the histogram by reporting the given `Point`.
pub fn observe(&self, v: Point) {
self.report(v)
}
/// Reports a value (`Point`) to the histogram by sending it through the
/// internal channel. This method manages the process of collecting and
/// reporting metrics for the histogram.
pub fn report(&self, v: Point) {
match self.channel.try_send((self.labels.clone(), v)) {
Ok(()) => {}
Err(TrySendError::Closed(_)) => {
// can happen during runtime shutdown
}
Err(TrySendError::Full(_)) => debug!("Histogram channel is full, dropping data"),
}
}
/// Starts a timer and returns a `HistogramTimerGuard` that, when dropped,
/// will record the elapsed time in the associated histogram.
pub fn start_timer(&self) -> HistogramTimerGuard {
HistogramTimerGuard {
histogram: self,
start: Instant::now(),
}
}
}
impl HistogramCollector {
/// Runs the histogram collection process asynchronously, cycling at a
/// specified interval (`HISTOGRAM_WINDOW_SEC`). It calculates the next
/// deadline and continuously processes incoming data points. The
/// process stops when `cycle` returns an error, which typically
/// indicates that the histogram no longer exists.
pub async fn run(mut self) {
let mut deadline = Instant::now();
loop {
// We calculate deadline here instead of just using sleep inside cycle to avoid
// accumulating error
#[cfg(test)]
const HISTOGRAM_WINDOW_SEC: u64 = 1;
#[cfg(not(test))]
const HISTOGRAM_WINDOW_SEC: u64 = 60;
deadline += Duration::from_secs(HISTOGRAM_WINDOW_SEC);
if self.cycle(deadline).await.is_err() {
return;
}
}
}
/// Collects histogram data points until a deadline or a maximum number of
/// points (`MAX_POINTS`) is reached. The function collects data points
/// into `labeled_data` while receiving them from the channel, breaking
/// when either the deadline is reached or the histogram channel is closed.
/// If the number of data points exceeds the limit, some points are
/// dropped, and an error is logged. After processing, the data is
/// handed off to the reporter for aggregation and analysis.
async fn cycle(&mut self, deadline: Instant) -> Result<(), ()> {
let mut labeled_data: HashMap<HistogramLabels, Vec<Point>> = HashMap::new();
let mut count = 0usize;
let mut timeout = tokio::time::sleep_until(deadline).boxed();
const MAX_POINTS: usize = 500_000;
loop {
tokio::select! {
_ = &mut timeout => break,
point = self.channel.recv() => {
count += 1;
if count > MAX_POINTS {
continue;
}
if let Some((label, point)) = point {
let values = labeled_data.entry(label).or_default();
values.push(point);
} else {
// Histogram no longer exists
return Err(());
}
},
}
}
if count > MAX_POINTS {
error!(
"Too many data points for histogram, dropping {} points",
count - MAX_POINTS
);
}
if Arc::strong_count(&self.reporter) != 1 {
#[cfg(not(debug_assertions))]
error!(
"Histogram data overflow - we receive histogram data for {} faster then can process. Some histogram data is dropped",
self._name
);
} else {
let reporter = self.reporter.clone();
Handle::current().spawn_blocking(move || reporter.lock().report(labeled_data));
}
Ok(())
}
}
impl HistogramReporter {
/// Reports the collected histogram data by aggregating it and updating the
/// corresponding metrics. It first sorts the data points and then
/// calculates specific percentiles as defined by `self.percentiles`.
/// Each calculated percentile value is set in the `IntGaugeVec`. It also
/// computes the total sum and count of the data points, updating the
/// respective metrics (`sum` and `count`). If any labels are no longer in
/// use, their metrics are reset to zero.
pub fn report(&mut self, labeled_data: HashMap<HistogramLabels, Vec<Point>>) {
let _scope = monitored_scope("HistogramReporter::report");
let mut reset_labels = self.known_labels.clone();
for (label, mut data) in labeled_data {
self.known_labels.insert(label.clone());
reset_labels.remove(&label);
assert!(!data.is_empty());
data.sort_unstable();
for pct1000 in self.percentiles.iter() {
let index = Self::pct1000_index(data.len(), *pct1000);
let point = *data.get(index).unwrap();
let pct_str = Self::format_pct1000(*pct1000);
let labels = Self::gauge_labels(&label, &pct_str);
let metric = self.gauge.with_label_values(&labels);
metric.set(point as i64);
}
let mut sum = 0u64;
let count = data.len() as u64;
for point in data {
sum += point;
}
let labels: Vec<_> = label.labels.iter().map(|s| &s[..]).collect();
self.sum.with_label_values(&labels).inc_by(sum);
self.count.with_label_values(&labels).inc_by(count);
}
for reset_label in reset_labels {
for pct1000 in self.percentiles.iter() {
let pct_str = Self::format_pct1000(*pct1000);
let labels = Self::gauge_labels(&reset_label, &pct_str);
let metric = self.gauge.with_label_values(&labels);
metric.set(0);
}
}
}
/// Constructs a vector of label values for a gauge metric. It takes a
/// `HistogramLabels` instance and a percentile string (`pct_str`),
/// returning a combined list of label values to be used for identifying
/// the gauge metric.
fn gauge_labels<'a>(label: &'a HistogramLabels, pct_str: &'a str) -> Vec<&'a str> {
let labels = label.labels.iter().map(|s| &s[..]).chain([pct_str]);
labels.collect()
}
/// Returns value in range [0; len)
fn pct1000_index(len: usize, pct1000: usize) -> usize {
len * pct1000 / 1000
}
/// Formats a given percentile value (`pct1000`) as a string by converting
/// it to a decimal percentage. The `pct1000` parameter is divided by 10
/// to represent the correct percentile value (e.g., 250 -> "25.0").
fn format_pct1000(pct1000: usize) -> String {
format!("{}", (pct1000 as f64) / 10.)
}
}
impl<'a> Drop for HistogramTimerGuard<'a> {
/// Reports the elapsed time in milliseconds to the associated histogram
/// when the `HistogramTimerGuard` is dropped.
fn drop(&mut self) {
self.histogram
.report(self.start.elapsed().as_millis() as u64);
}
}
#[cfg(test)]
mod tests {
use prometheus::proto::MetricFamily;
use super::*;
#[test]
fn pct_index_test() {
assert_eq!(200, HistogramReporter::pct1000_index(1000, 200));
assert_eq!(100, HistogramReporter::pct1000_index(500, 200));
assert_eq!(1800, HistogramReporter::pct1000_index(2000, 900));
// Boundary checks
assert_eq!(21, HistogramReporter::pct1000_index(22, 999));
assert_eq!(0, HistogramReporter::pct1000_index(1, 999));
assert_eq!(0, HistogramReporter::pct1000_index(1, 100));
assert_eq!(0, HistogramReporter::pct1000_index(1, 1));
}
#[test]
fn format_pct1000_test() {
assert_eq!(HistogramReporter::format_pct1000(999), "99.9");
assert_eq!(HistogramReporter::format_pct1000(990), "99");
assert_eq!(HistogramReporter::format_pct1000(900), "90");
}
#[tokio::test]
async fn histogram_test() {
let registry = Registry::new();
let histogram = HistogramVec::new_in_registry_with_percentiles(
"test",
"xx",
&["lab"],
®istry,
vec![500, 900],
);
let a = histogram.with_label_values(&["a"]);
let b = histogram.with_label_values(&["b"]);
a.report(1);
a.report(2);
a.report(3);
a.report(4);
b.report(10);
b.report(20);
b.report(30);
b.report(40);
tokio::time::sleep(Duration::from_millis(1500)).await;
let gather = registry.gather();
let gather: HashMap<_, _> = gather
.into_iter()
.map(|f| (f.get_name().to_string(), f))
.collect();
let hist = gather.get("test").unwrap();
let sum = gather.get("test_sum").unwrap();
let count = gather.get("test_count").unwrap();
let hist = aggregate_gauge_by_label(hist);
let sum = aggregate_counter_by_label(sum);
let count = aggregate_counter_by_label(count);
assert_eq!(Some(3.), hist.get("::a::50").cloned());
assert_eq!(Some(4.), hist.get("::a::90").cloned());
assert_eq!(Some(30.), hist.get("::b::50").cloned());
assert_eq!(Some(40.), hist.get("::b::90").cloned());
assert_eq!(Some(10.), sum.get("::a").cloned());
assert_eq!(Some(100.), sum.get("::b").cloned());
assert_eq!(Some(4.), count.get("::a").cloned());
assert_eq!(Some(4.), count.get("::b").cloned());
}
fn aggregate_gauge_by_label(family: &MetricFamily) -> HashMap<String, f64> {
family
.get_metric()
.iter()
.map(|m| {
let value = m.get_gauge().get_value();
let mut key = String::new();
for label in m.get_label() {
key.push_str("::");
key.push_str(label.get_value());
}
(key, value)
})
.collect()
}
fn aggregate_counter_by_label(family: &MetricFamily) -> HashMap<String, f64> {
family
.get_metric()
.iter()
.map(|m| {
let value = m.get_counter().get_value();
let mut key = String::new();
for label in m.get_label() {
key.push_str("::");
key.push_str(label.get_value());
}
(key, value)
})
.collect()
}
}